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Abstract— This paper presents a fully distributed approach
for multi-robot systems to explore and cover time-varying
spatial processes in complex, non-convex environments. Build-
ing on the heat-equation-driven adaptive coverage (HEDAC)
framework, our method enables autonomous navigation, pro-
cess reconstruction, and dynamic balancing of exploration
and coverage in a collision-free manner. A temporal decay
component regulates the trade-off between revisiting known
regions and exploring new ones, ensuring adaptive and efficient
monitoring. Simulations and real-world experiments validate
the approach’s effectiveness and robustness.

I. INTRODUCTION

Coverage control in multi-robot systems allocates sensing
effort according to a spatial density. Classical Voronoi-based
methods [1], [2] optimize static coverage, while ergodic
coverage aligns a robot’s time-averaged trajectory with a
distribution of interest. The Spectral Multiscale Coverage
(SMC) framework [3], later extended with time-optimal [4],
[5] and receding-horizon [6] methods, assumes convexity,
lacks collision avoidance, and emphasizes global coverage.
HEDAC [7] addresses some of these issues via a stationary
heat equation embedding.

Prior work assumes full knowledge of static processes,
whereas real applications require online monitoring of un-
known, time-varying phenomena. Gaussian Processes (GPs)
are standard for modeling [8]-[10] but face computational
and scalability limits [11], [12]. No existing method fully
combines distributed ergodic control, time-varying learning,
and collision-aware motion; [13] addresses decentralized
ergodic control but not dynamic process estimation.

We present a fully distributed multi-robot framework
that leverages HEDAC and time-varying GPs to collabora-
tively explore and track dynamic environments, adapting to
changes in real time.

II. DISTRIBUTED ERGODIC COVERAGE CONTROL
A. Distributed Gaussian Process

In this work, we adopt time-varying GPs to enable robots
to explore, reconstruct, and persistently monitor dynamic
spatial phenomena. Each robot computes its own GP;
online, collaborating with neighbors via dataset sharing.
Following [12], we estimate the underlying process by
applying spatio-temporal decay, so that older or spatially
distant samples contribute less to predictions defined as
(6°1D:) ~ N (u(X*), £(X*)), where

w(X*) = R(X*, Xy)T[R(Xy, Xy) + 020y,
Y(X*) = w(X*, X*) — &(X*, X,)T (1)
R(Xe, Xy) + 2T T HR(XK, X).
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Fig. 1.  Snapshot of a real-world experiment with three Uvify IFO-
S drones running the algorithm onboard. Drones collaborate via minimal
communication. RViz visualization shows the environment, trajectories, and
spatial process estimation.

The decayed covariance matrices are
R(Xe,Xt) = 6(Xe, X¢) © Dy © TP,

2
R(X*, X)) = k(X*,X;) ©d] © T, @

with ® denoting element-wise multiplication. The temporal
decay components T” and T¢ are defined following [12].
Unlike [12], which bases spatial decay on sample index,
we define it using true Euclidean distance to avoid treating
distant samples as nearby

[Dy]ij = exp(—lxi — x;(3/As),
[de]i = exp(—[1x; — zi[13/As),

where x;,x; € X; are data samples, z; is the current robot
position, and A sets the spatial decay rate.

To mitigate the O(N3) GP complexity, we adopt
threshold-based filtering similar to [11], [12], retaining
samples that reduce epistemic uncertainty and discarding
outdated ones. Specifically, a sample x is included if
oin(X) > €n/z and removed if ooy (X) > eou/z, Where e,
and ey, are inclusion and removal tolerances, and z sets the
confidence level.
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B. Dynamic Goal Density

We define a dynamic goal density that fuses each robot’s
GP mean p;(x) and uncertainty o, ;(x) = /X;(x) into a
unified spatial distribution

Fi(x) = (exp(ui(x)) — 1) + (exp(0u,i(x)) = 1) (4)

with the normalized unified spatial distribution defined as
Fi(x) = Fyi(x)/[o Fi(x)dx. This distribution prioritizes
exploration in regions of high uncertainty and monitoring



in high-mean areas, with both contributions normalized. The
robot dynamically updates its local goal density using a
smoothed inner product:

9i(x) = (¢4, Fi)g :/Qsow(x)Fi(x)dx. (5)

where ¢, is an RBF smoothing kernel [7]. Updates occur
continuously as robots explore or share data, enabling adap-
tive coverage of time-varying spatial processes.

C. Distributed Ergodic Control

To enable scalable, distributed collaboration, robots ex-
change only local coverage information within a communi-
cation range r, avoiding unnecessary global sharing. Each
robot maintains a local coverage density

1

t
e t) = 1 [ neD)dn i) = expl—(exd)). ©

where r! is the sensor-relative position, € > 0 shapes the RBF
footprint, and time-dependence captures dynamic sensing.
Neighbor contributions are aggregated via

Gi(x,t) = ¢i(x,t) + Z wy(x,2i(t))c;(x,t), (7)
JEN; »

with w, enforcing locality and NV;, denoting neighbors
within range r. The resulting distributed error field is

éi(xat) = gi(x) - Ei(xa t)a 81 = ||éz(x7 7f)||27 (8)

where g;(x) is the dynamic goal density (3). Each robot
defines a local source for the heat equation as

~i 7t 2 ~i at > 07
S S ©)
0 otherwise,
and solves the distributed heat equation
pAu(x,t) = Pu(x,t) — s;(x,t),
ou (10)

a—nzo on 4£2,

where p controls spatial diffusion, S ensures scale-
invariant decay, and n is the outward normal. Collision
avoidance [14] maintains a minimum safety distance rg,
enabling safe, distributed ergodic coverage.

III. EXPERIMENTAL VALIDATION
A. Time-varying Process

We evaluate our distributed strategy in a scenario where
the spatial process abruptly changes. In Fig. |2l four robots
explore, learn, and monitor using local information and
dynamic goal densities. After the shift at step 5000, our
method quickly adapts, redirecting coverage and learning the
updated process, while centralized HEDAC remains focused
on outdated regions. Fig. [3] illustrates one robot’s trajectory
and ergodic metric before and after the change, showing
effective adaptation from the initial to the new key area.
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Fig. 2. Ergodic metric over time for four robots monitoring a dynamic spa-
tial process using our distributed strategy (colored lines) versus centralized
HEDAC [7] (purple). At step 5000 (dashed), the process abruptly shifts. Our
method adapts via time-varying GPs and dynamic goal densities, while the
centralized baseline shows lower initial metrics and slow responsiveness.
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Fig. 3. Simulation of one robot before and after a sudden spatial process
change at step 5000. Trajectory is color-coded by ergodic metric (brighter
= focused coverage). Black dots: initial positions; red squares: positions at
the change; black crosses: final positions. Other robots shown in gray.

B. Real-world experiments

We tested our distributed strategy with three Uvify IFO-
S drones, each running the algorithm onboard on a Jetson
Nano alongside a PX4 controller. Robots share minimal
information, position and dataset samples, via the base
station with neighbors only. Fig. [T] shows a snapshot and
RViz visualization.

IV. CONCLUSION

This work presents a fully distributed multi-robot system
for adaptive monitoring of time-varying spatial processes.
Each robot leverages its own GP, dynamic goal and coverage
strategies, and the HEDAC ergodic potential-based coordina-
tion mechanism to explore efficiently and safely. Simulations
and real-world experiments demonstrate the approach’s ro-
bustness and effectiveness.
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